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要  旨  _________________________________________________  
ケミカルトナー製造工場では，トナー品質や生産性の向上のために，設備や原材料の変更

が頻繁に行われる．これらの変更に伴い，トナーの自動品質制御システムの重要な役割を担

う予測モデルの再構築が必要となり，システムダウンの原因となる．このダウンタイムを短

縮するために，設備や原材料の変更直後に得られる少数のデータから高精度な予測モデルを

構築できる，転移学習を活用した効率的なモデリング手法を開発した．これは，

Frustratingly Easy Domain Adaptationを拡張した，新たな異種ドメイン適応手法である．予測

には，モデルの汎用性と精度を向上させるため，バギングを用いたガウス過程回帰（GPR）

を採用した．提案手法は，部分最小二乗回帰，ランダムフォレスト，GPRと比較して，優れ

た性能を示した．この手法をトナー量産工場に適用した結果，全てのトナー品質で予測精度

目標を満足することができ，トナー品質管理者の工場管理工数の75%削減を達成した． 

ABSTRACT  _________________________________________________  
In chemical toner manufacturing plants, equipment and raw materials are frequently changed to 

improve the toner quality and productivity. These changes require reconstruction of the prediction 

model, which plays a key role in the automatic quality control system, and cause downtime. To reduce 

the downtime, we developed an efficient modelling method based on transfer learning, which can build 

an accurate model from small-size data obtained just after the changes. By extending Frustratingly Easy 

Domain Adaptation, a new heterogeneous domain adaptation technique was proposed. In addition, 

gaussian process regression (GPR) was adopted with bagging to improve the robustness and accuracy 

of the model. The proposed method showed superior performance to partial least squares regression, 

random forest, and GPR. Finally, the proposed prediction method was applied to a toner mass-

production plant; the prediction accuracy target was satisfied for all toner qualities. As a result, a 75% 

reduction in plant control person-hours of the toner quality manager was achieved. 
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1. Introduction 

In recent years, automatic quality control has been used 

for stabilizing chemical toner quality and determining 

efficient operating conditions in toner plants1,2). In these 

plants, equipment and raw materials are often changed. As 

shown in Fig. 1, such a change alters the dimensions and 

distributions of input variables, makes it difficult to use 

existing prediction models, and makes it necessary to 

reconstruct the models. During the re-accumulation of 

training data, automatic quality control is forced to stop 

functioning, and manual quality control is required. This 

manual control requires many person-hours, therefore, it 

has been desired to construct an accurate prediction model 

using as short-term data as possible. 

A promising approach to solve this problem is to use 

transfer learning. We expanded Frustratingly Easy 

Domain Adaptation (FEDA), which is a simple 

homogeneous domain adaptation method, to cope with a 

heterogeneous domain adaptation (HDA) problem 

without complex parameter tuning. The proposed method 

is referred to as Frustratingly Easy Heterogeneous 

Domain Adaptation (FEHDA). Moreover, we utilized a 

combination of Gaussian Process Regression (GPR) and 

bagging, a type of ensemble learning, for predicting the 

toner quality. 

 

 
Fig. 1 The influence of changes in equipment and raw 

materials. 

 

 

2. Chemical toner manufacturing process 

The chemical toner manufacturing process treats one 

lot per day, and it takes seven days from raw material to 

final product, as shown in Fig. 2. The IoT-based 

manufacturing process data collection system handles 

several thousand variables (items), including raw material 

properties, equipment operation conditions, and toner 

quality, and stores data of several hundred lots or more. 

Before the introduction of automatic quality control, 

toner quality was controlled manually by the toner quality 

manager, who determined the optimum operating 

condition for lot based on the quality measurements of the 

lots whose manufacturing N was finished (lot N-2 and 

older). The manual quality control consumes many 

person-hours and increases the risk of out-of-specification 

due to variations in toner quality. 

The automatic quality control system currently in 

operation consists of a quality prediction module that 

predicts future toner quality and an operating condition 

optimization module that determines the operation 

amount2). 

This automatic quality control is feed-forward 

inferential control, which simulates the manual operation, 

as shown in Fig. 2. However, as mentioned in the previous 

section, the change of equipment and raw materials 

requires the data re-accumulation of at least 40 lots (days) 

so that the model reconstructed satisfies the accuracy 

target. 

 

3. Prediction using transfer learning 

3-1 Frustratingly Easy Heterogeneous 
Domain Adaptation 

FEDA is a method of transfer learning that is easy to 

implement with simple feature space expansion3).
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Fig. 2 Chemical toner manufacturing process and automatic quality control system2).

Assuming that the input variables 𝒙𝒙(𝑠𝑠)  in the source 

domain (hereinafter referred to as “SD”) and 𝒙𝒙(𝑡𝑡) in the 

target domain (hereinafter referred to as “TD”) are K-

dimensional, the input variables in both domains are 

expanded into 3K-dimensional features as follows: 
 
𝐷𝐷𝑠𝑠 = �𝒙𝒙(𝑠𝑠)，𝒙𝒙(𝑠𝑠)，0   � 
𝐷𝐷𝑡𝑡 = �𝒙𝒙(𝑡𝑡)，0   ，𝒙𝒙(𝑡𝑡)� 

(1) 
(2) 

 
The expanded feature space consists of a space with 

features common to both domains, a space with features 

unique to SD, and a space with features unique to TD. 

Also, 0 = (0, 0, 0, … . , 0) ∈ ℛ𝐾𝐾 in Eqs. (1) and (2) is the 

zero vector. 

In the manufacturing process, due to changes in 

equipment and raw materials, the configuration of the 

manufacturing equipment differs in both domains, which 

makes the location and number of installed sensors also 

different. Hence, when heterogeneous domain adaptation 

is required, FEDA cannot be used as it is. To make FEDA 

applicable to heterogeneous domain adaptation (HDA), 

heterogeneous feature augmentation (HFA) was proposed4). 

This method needs much computational time because to 

solve an optimization problem for finding the optimal 

latent space. 

We propose frustratingly easy heterogeneous domain 

adaption (FEHDA), which is a direct and simple extension 

of FEDA and applicable to HDA. The proposed method 

does not require solving the optimization problem. We 

divide input variables 𝒙𝒙(𝑠𝑠) ∈ ℛ𝑃𝑃 in SD into 𝒙𝒙𝑐𝑐(𝑠𝑠) ∈ ℛ𝐾𝐾  

that is common to SD and TD and 𝒙𝒙𝑢𝑢(𝑠𝑠) ∈ ℛ𝑃𝑃−𝐾𝐾 that is 

unique to SD. Similarly, input variables 𝒙𝒙(𝑡𝑡) ∈ ℛ𝑄𝑄 in TD 

is divided into the common input variables 𝒙𝒙𝑐𝑐(𝑡𝑡) ∈ ℛ𝐾𝐾 

and the unique input variables 𝒙𝒙𝑢𝑢(𝑡𝑡) ∈ ℛ𝑄𝑄−𝐾𝐾. As shown 

in Fig. 3, 𝒙𝒙𝑐𝑐(𝑠𝑠) and 𝒙𝒙𝑐𝑐(𝑡𝑡) are expanded as in Eqs. (1) and 

(2), respectively, while 𝒙𝒙𝑢𝑢(𝑠𝑠) and 𝒙𝒙𝑢𝑢(𝑡𝑡) are placed in the 

space with unique features in each domain as follows: 
 
𝐷𝐷𝑠𝑠 = �𝒙𝒙𝑐𝑐(𝑠𝑠)，𝒙𝒙𝑐𝑐(𝑠𝑠)，𝒙𝒙𝑢𝑢(𝑠𝑠)，  0     ，  0   � 
𝐷𝐷𝑡𝑡 = �𝒙𝒙𝑐𝑐(𝑡𝑡)，   0   ，  0     ，𝒙𝒙𝑐𝑐(𝑡𝑡)，𝒙𝒙𝑢𝑢(𝑡𝑡)� 

(3) 
(4) 

 

3-2 Prediction Model 

To build a prediction model, we propose a method that 

combines Gaussian process regression (GPR) and 

bagging. The input variables are the expanded ones in Eqs. 

(3) and (4). GPR can predict not only the expected values 

but also the standard deviations of output variables and 

provide the reliability of the prediction. Bagging is a form  

of ensemble learning that uses bootstrap sampling to 
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Fig. 3 Feature space expansion in Frustratingly Easy Heterogeneous Domain Adaptation (FEHDA).

construct many independent weak learners and then 

integrates the results of the weak learners into a prediction. 

Kamishima et al. (2009) proposed TrBagg5), which uses 

bagging for transfer learning. TrBagg builds weak 

learners using data sampled from SD and TD. The weak 

learners are adopted based on the classification errors for 

TD. The method may cause over-fitting or require the 

separation of TD for validation. 

The chemical toner manufacturing process produces 

only one lot per day. To reduce the downtime of the 

automatic quality control system, the number of samples 

after each change, which are used for reconstructing the 

prediction model, needs to be limited. That means the 

number of TD lots must be small, i.e., about 10 lots. Since 

TrBagg does not work well in such a situation, we did not 

adopt it. In the proposed method, bagging is modified by 

selecting only weak learners with small standard 

deviations of the output variables when integrating the 

results of the weak learners. The weak learners with small 

standard deviations are expected to give a more reliable 

prediction because it is considered to use data with high 

similarity to the target lot preferentially. We use sequential 

updating of the prediction model for each lot. 

 

4. Comparison of prediction methods 

The proposed modeling method, i.e., GPR and bagging, 

was compared with the typical regression methods, partial 

least squares regression (PLSR), random forest (RF), and 

GPR in two cases: 1) change of coloring materials, 

representing material improvement, and 2) change of 

production scale, representing equipment improvement. 

FEHDA was used in both cases, and the two most 

important qualities were investigated. The dimensions of 

the input variables are shown in Table 1. 

In case 1, black and magenta toners, which were made 

from almost the same materials except for the coloring 

one, were targeted, regarding black toner as SD and 

magenta toner as TD. In case 2, the same color toner 

manufactured by equipment with different scales was 

targeted, regarding the large scale plant as SD and the 

small scale one as TD. 

Table 1 The dimensions of the input variables and the 
number of lots in two cases: 1) change of 
coloring materials and 2) change of production 
scale. 

 
 

The prediction accuracy was evaluated using Root 

Mean Squared Error (RMSE). In defining the target for 
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the prediction accuracy, the following conditions were set; 

first, the center of the predicted distribution of the 

qualities is within 50% of the process specification width 

Δ, and second, the probability of out-of-specification is 

less than 0.3% when the quality prediction value is at the 

upper or lower limit of the process specification width Δ. 

The variability was assumed to be normally distributed2). 

Based on these conditions, the target value for prediction 

accuracy became 0.5∆≥6 RMSE, i.e., RMSE/Δ≤8.3[%]. 

Fig. 4 shows the evaluation results for the 11th to 110th 

lots in TD. The proposed method outperformed the other 

methods in both cases and also satisfied the prediction 

accuracy target. In particular, a more significant 

improvement was obtained in case 1. Fig. 5 shows the 

predicted and measured values for each lot of quality #1. 

It was confirmed that the predicted values followed the 

trend of the actual measured values, and there were no 

large errors in all lots. On the other hand, the improvement 

achieved by the proposed method in case 2 was smaller 

than that in case 1. This can be attributed to the large 

proportion of intrinsic variables that account for 45% of 

the input variables in each domain, which implies that SD 

contains less valid information for the transfer. 

 

 

Fig. 4 Comparison of RMSE’s of prediction methods. 

 

Fig. 5 Quality #1 prediction results of the proposed 
method for case 1. 

 

5. Application to a mass-production plant 

The proposed method was applied to a mass-production 

plant in RICOH. There are 12 quality items to be predicted, 

including particle size distribution, particle shape, and 

charging characteristics. The numbers of variables and 

lots are shown in Table 1. The proposed prediction method 

was compared with two different methods using only TD 

(hereinafter, referred to as Target) and using only common 

input variables in SD and TD (referred to as Common). In 

these two methods, we used random forest, which has 

been used in the existing automatic quality control2). 

We conducted the prediction of the 12 qualities from 

the 11th lot to the 40th lot in TD. While Target and 

Common failed to achieve the prediction accuracy target 

for two and three quality items, respectively, the proposed 

method achieved the prediction accuracy target for all 

quality items. Besides, the proposed method 

outperformed Target and Common in all qualities. The 

prediction accuracy in RMSE of the proposed method was 

11.4% higher than Target on average, and particularly 

17.4% for quality #10. Compared to Common, the 

average improvement was 15.4%, and the best was 25.4% 

in quality #4. 
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Fig. 6 shows the predicted and measured values for 

each lot of quality #2. The predicted values of the 

proposed method follow the measured values better than 

those of Target and Common. In particular, the prediction 

errors in the initial stage for lots 18, 24, 25, and 26 are 

small. The prediction accuracy indices, i.e., RMSE/Δ, are 

8.1% for the proposed method, 9.5% for Target, and 8.6% 

for Common, indicating that the proposed method 

satisfies the prediction target values for these small lots. 

 

 

Fig. 6 The prediction results of the proposed method, 
Target, and Common for quality #2. 

The toner qualities predicted by the transfer learning 

were used in the automatic quality control system based 

on feed-forward inference control2) described in Section 2. 

Before applying prediction by the transfer learning, 40 

lots (days) of data had to be accumulated to achieve the 

required accuracy target. With the proposed method, the 

data accumulation was reduced to 10 lots (days), and the 

person-hours required for monitoring and control by 

quality managers immediately after a change in 

equipment or raw materials were reduced by 75%. 

 

6. Conclusions and future tasks 

We first proposed a new transfer learning method that 

can cope with heterogeneous domain adaptation, i.e., 

FEHDA, which is simple extension of FEDA. Second, we 

proposed a new prediction method that combines 

Gaussian process regression (GPR) and bagging. Finally, 

the proposed method was adopted in the automatic control 

system of RICOH’s chemical toner plant. The downtime 

of the automatic quality control system decreased from 40 

lots (days) to 10 lots (days), and the person-hours required 

for manual quality control by toner quality managers have 

been reduced by 75%. 

 
References _______________________________  

1) H. Khorami et al.: Multivariate Modeling of a 

Chemical Toner Manufacturing Process, Chemical 

Engineering and Technology, Vol. 40, pp. 459-469 

(2017). 

2) N. Takahashi et al.: Automatic Quality Control for 

Chemical Toner Using Machine Learning Prediction 

Technology, Society of Instrument and Control 

Engineers 7th Multi Symposium on Control Systems 

2A2-3, in Japanese (2020). 

3) H. Daumé III: Frustratingly Easy Domain Adaptation, 

Proceedings of the 45th Annual Meeting of ACL, 

pp. 256-263 (2007). 

4) L. Duan, D. Xu, I.W. Tsang: Learning with 

Augmented Features for Heterogeneous Domain 

Adaptation, Proceedings of the 29th International 

Conference on Machine Learning, ICML 2012 1, 

pp. 711-718 (2012). 

5) T. Kamishima, M. Hamasaki, S. Akaho: TrBagg: A 

simple transfer learning method and its application to 

personalization in collaborative tagging, in: 

Proceedings - IEEE International Conference on 

Data Mining, ICDM, pp. 219-228 (2009). 


