反復関数集合によるフラクタル画像生成 Fractal Image Generation with Iterated Function Set 浅井 貴浩* Takahiro ASAI

要 旨

反復関数集合を用いることにより,少ないデータから多彩なフラクタル画像を得る方 法を開発した.従来のフラクタル画像生成方法,例えばジュリア・マンデルブロー集合を 図示するものや自己相似関数を用いるHata-Hatchinsonの方法では,いずれも反復過程 において常に一種類のパラメータしか用いないために生成される画像は単純なものであ った.複数のパラメータからなる反復関数集合を作成し,反復の各段階において集合の 要素であるパラメータを選択して適用することにより,少ないデータからでも,より多 彩な画像を生成することを可能とした.

ABSTRACT

A new fractal image generation method using a generation function set is developed. The generation function set which has several different parameters is defined, one of which to be selected at each recursion. The usual methods use only one parameter, such as the Julia-Mandelbrot and the Hata-Huchinson methods. As a result, various kinds of unique class of non-linear fractal images from a few data are constructed.

* 研究開発本部 村山塾 Murayama Juku, Research and Development Group

1.背景と目的

近年ポスター等のデザインや映画,テレビCM等にお いて計算機システムにより作成されるCG(Computer Graphics 画像が多用されており,新しい種類の画像を 生成するためのアルゴリズムへの期待が高まっている. またDTR(Desk Top Publishing)システムやInternet の普及に伴い,個人による文書やWebページの作成等 に使用するデジタルコンテンツとしてのCG画像,それら を作成するアプリケーションへの需要が高まっている.

こうした背景の中でMandelbrotにより提唱されたフ ラクタル幾何学 1 ltCG画像を生成するアルゴリズムの 一つとして現在広く使われている.フラクタル画像生成 の方法は大きく2種類に分けることができ,一方はfBm [2 等を利用して不確定要素を付加することによりフラ クタル性を持つ形状を生成するもので,ランダムフラク タルあるいは非決定論的フラクタルと呼ばれる、これは 主に地形の起伏や雲等の自然物の形状モデルを作成する ために使われている.もう一方は数式により求められる フラクタル集合を画像として描くもので,不確定要素が ないことから決定論的フラクタルと呼ばれる.反復関数 集合による方法 3], Hata-Hatchinsonの方法 4], Lsystemによる方法 5 かJulia, Mandelbrot集合を図示 する方法1等がこれに当たる.決定論的フラクタルア ルゴリズムにより作成された画像は,形状の独特な複雑 さから計算機による画像を連想させ,主にポスターや広 告等のデザインに使われることが多い.

決定論的フラクタルによる画像生成の場合,同じ数式 を用いるならば一種類のパラメータにより一種類の画像 が決まる.従ってパラメータを変化させながら生成画像 のバリエーションを得ることになるが,同じ数式から生 成される画像には一定の傾向が見られるため変化に乏し い.さらに生成される画像は自己相似集合[6]7]とな るため,全体のミニチュアが各部に繰り返し現れるパタ ーン画像となり形状が単調で面白みに欠ける.そこで反 復回数等の条件付けによる色の変更,集合を図示する領 域を変える等の処理で画像のバリエーションを得ている のが現状である.

本研究はこうした決定論的フラクタルによる画像生成 の問題点に着目し,反復関数系を用いる決定論的フラク タル画像生成方法を拡張,複数のパラメータを反復段階 において変更することで多彩なフラクタル画像を生成可 能とする技術を開発することを目的とした.

2.反復関数系によるフラクタル画像生成

2-1 反復関数系

基本となる反復関数系の定義および定理を示す.詳細

は文献[8]にある.

定義2.1

(X d を完備な距離空間とする.このときハウスドル フ空間 H(X)とは,空間内の点が空集合を除くコンパ クトな部分集合となるような空間を意味する. 定義2.2

反復関数系は、完備な距離空間 $X d \ge n=12$, Nにおいてそれぞれ縮小係数 s_n を持つ縮小写像 X Xの有限集合とから成る. IFS の略記は iterated function system(反復関数系)として使用される.

このIFSを{ X: _ n=1 2 , ...N }と表記し,またその縮小 係数はs=Max{ s, n=1 2 , ...N }である.

定理2.1

{ X: _, *p*=12,...N を縮小係数 *s*をもつIFSとすると, 全てのB H(X)において変換 W: H(X) H(X)は

$$W(B) = \bigcup_{n=1}^{N} \omega_n(B)$$

で定義される.これは完備な距離空間(H(X), I(d)) 上での縮小係数 *s*の縮小写像である.この縮小写像の一 意の不動点A = H(X)は以下の式を満たす.

$$A = W(A) = \bigcup_{n=1}^{N} \omega_n(A)$$

また任意の $B \quad \mathcal{H}(X)$ について, $A=Lim_n \quad W^{\circ n}(B)$ で与えられる.

2-2 **画像生成の例**

IFSを利用するフラクタル画像生成方法について説明 する.ここでは距離空間(X d)をユークリッド平面R² とユークリッド距離とし,R²上の縮小写像 _i:R² R²を アフィン変換

$$\omega_i = \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a_i & b_i \\ c_i & d_i \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} e_i \\ f_i \end{pmatrix}$$
(1)

とする.

例えばKochの雪片曲線を作成するためのIFSは2つの 縮小写像から成り,それぞれ式(1)に対応するパラメー タ $a \ b \ c \ d \ e \ f$ はTable1のようになる.

Table1 Parameters of generating the Koch curve

		a	Ь	С	d	е	f
a. <i>W</i> ₁	ω_1	1/2	√3/6	√3/6	-1/2	0	0
	ω2	1/2	- 13/6	6	-1/2	1/2	V3/6

初期集合K。を適当に定め K。からn回反復後の集合

 $K_n = \omega_1(K_{n-1}) \bigcup \omega_2(K_{n-1}) = W^{\circ n}(K_0)$

を算出し,画像として描画する.

K。を頂点(00)(10)(1/2,3/6)とする三角形とし,

8回反復後のK_aを求めて画像生成していく様子をFig.1に 示す.

Fig.1 Example of generating the Koch curve under IFS(Iterated Function System)

算出された集合 K_nを画像にする際,反復回数や軌跡 による色の変更等の処理を行なうことでバリエーション が得られる.また反復回数 nを十分大きくとるとき不動 点は出力デバイス上で1ピクセルに収束するため初期集 合 K₀は任意であるが生成する形状の興味という点から は少ない回数で反復を打ち切ることも可能であり,この とき Fig.1の K₁から K₀に見られるように細部に K₀の形状 が現れる.文献4]では K₀を工夫することにより画像の バリエーションを増やしている.

Fig.2 Examples of image generated by IFS

3.反復関数集合によるフラクタル画像生成

3-1 **反復関数集合**

反復関数系を拡張する.拡張の目的はより多彩なフラ クタル画像を得ることにある.反復法における変換Wは 反復過程において終始固定であるため,最終的に得られ る集合は常に一定であった.そこで反復の各段階におい て変換Wを変更可能となるよう反復関数集合を定義する.

定義3.1(反復関数集合)

反復関数集合は,m=12,... Mについてそれぞれ縮小 係数 s_m をもつ縮小写像 $_m:X$ Xからなる有限集合を $W=\{m, m=12,... M\}$ としたとき,N個のWからなる 有限集合[$W_n p=12, N$]を意味する.

反復の各段階で反復関数集合から変換を選択して適用 することでパラメータを変化させることが可能となる. 定義3.2(確率付き反復関数集合)

確率付き反復関数集合は,反復関数集合 { W_n p=12, N と, n=12, Nにおいて

$$p_1 + p_2 + p_3 + \dots + p_n = 1 p_n \ge 0$$

を満たすN個の有限集合(*p_n p*=1 2 , ... *N*)とから成る . 確率付き反復関数集合を(*W_n*;*p_n p*=1 2 , ... *N*)と表記する .

*p*_nは,ある反復過程で反復関数集合の*n*番目の要素が 変換として選択される確率を示す.

3-2 **画像生成の例**

Fig.2のa, bに示したKochの雪片曲線とPolya曲線の2つの変換からなる反復関数集合

{ W₁ W₂ }={{ 11, 12} } 21, 22 } を例に,反復関数集合による画像生成方法について説明する.

まず各反復過程での変換 W_1, W_2 の適用順序を定める. ここでは反復回数nが奇数のとき W_1 ,偶数のとき W_2 を 適用するとすると,変換を4回反復した後の集合 K_4 は

 $K_4 = W_2(W_1(W_2(W_1(K_0)))) = W_2 O W_1 O W_2 O W_1(K_0))$

となる.反復過程において形状が変化していく様子を Fig.3に示す.変換の適用順序が異なると必ず形状が異 なる画像を生成できるため,少ないパラメータから多彩 なフラクタル画像を得ることが可能である.

Fig.3 Example of generating images by IFS with a function set

3-3 反復関数集合によるフラクタル形状制御

反復関数集合を利用することでフラクタル形状の制御 を行なうことが可能となる.一般に,フラクタル画像を 生成する際に未知のパラメータから算出される不動点を あらかじめ予測するのは非常に困難であり,実際に計算 機を使用して画像生成した後に形状を確認しているのが 現状である.そこであらかじめ不動点のわかっている既 知のパラメータのみを用いて反復関数集合を作成し,そ れを利用して画像生成を行なうことである程度最終的な 形状を制御できる.

またコラージュ定理 8 Jによれば,パラメータの値に 小さな変更を与えたときには不動点すなわち形状も小さ な変更を受けることがいえる.従ってパラメータに小さ な変更を加えて新しいパラメータを作成し,それらを要 素とする反復関数集合を使用して画像生成を行なうこと により元の形状を基本的に崩さずに細かな変更を与える ことができる.Fig.4では基本となる変換W,のパラメー タの値を少しずつ変更してW2からW2を作成し,それら からなる反復関数集合を使用して画像生成を行なうこと で最終形状にわずかな変更を与えてみた.bからeのどの 画像も基本的な形状は元のaと大差ないが,細部はいず れも異なっている.

Fig.4 Controling fractal images by IFS with a function set

確率付き反復関数集合を利用することで選択される変換に重み付けを行ない,さらに細かい制御を行なうことも可能である.

3-4 3Dモデリング

距離空間を(R³ d)とし, R²上の写像式(1)をR³上の写 像式(2)にすることで,2次元の場合と同じアルゴリズ ムで反復関数集合による3次元フラクタルモデルを生成 することが可能である.

1	(x)		(a_{11})	a_{12}	a_{13}	(x)	(b	211)	
ω_i	y	=	a_{21}	a_{22}	<i>a</i> ₂₃	y ·	+ b	21	(2)
	(z)		a_{31}	a_{32}	a33)	(z)	b	, 31)	

例として3Dシェルピンスキーガスケットと3D Levy からなる反復関数集合を使用してモデルを生成し,適当 なレンダリングを施して表示させた例をFig.5に示す. 初期集合K₀はR³上の5点(0,0,0)(1,0,0)(1/20,3/6) (1/20,3/6)(1/2,3/60)を頂点とする四角錐とした.

Fig.5 Example of 3D Fractal Model generated by IFS with a function set

4.応用

4-1 パターン画像の作成

反復関数集合によるフラクタル画像の一つのアプリケ ーションとしてパターン画像作成ツールを開発した.パ ターン画像とはタイル、と呼ばれる基本画像を平面上に 幾何的に複数配置することで得られる繰り返しを持つ画 像のことを指す.

Fig.6 Generating a pattern by a tile image

まず基本となる画像を反復関数集合を用いるフラクタ ルアルゴリズムで自動生成し,生成された画像をそのま ま,あるいは全体を左右/上下対称となるようにアフィ ン変換を施したものとの重ね合わせを行うことでタイ ルを作成した.

Fig.2で示された6種類の反復関数系を要素として持つ 反復関数集合から作成可能なタイルの例をFig.7に示す. 各タイルを作成するためのパラメータをAPPENDIX A-4 に示す.

Fig.7 Examples of tiles generated by IFS with a function set

このような操作で得られたタイルをツールを用いてビットマップ上に幾何的に繰り返し配置し,最終的に葉書 作成アプリケーションで使用する背景用テンプレート用 画像(文様または地紋)とした.反復関数集合により作 成された文様,地紋の例をFig.8 a, blc示す.

Fig.8 Examples of patterns by fractal images

5. 結論

反復関数集合によるフラクタル画像生成は従来の方法 と比較して以下の点で有効である.

・バリエーションの飛躍的な増加

異なる変換を異なる順序で適用することにより生成可能な形状を飛躍的に増加させることが可能である.反復 関数集合の要素数m,反復回数nのときに得られる画像のバリエーションの総数はm"種類であり,例えばFig.2 に示した6種類のパラメータを利用して反復回数10回の 画像を生成する場合に生成し得るバリエーションの総数 は6¹⁰=60 466 176種類となる.

・形状制御

既知のパラメータを組み合わせて使用する,あるいは 一つのパラメータの値から新しいパラメータを作成し, それらを組み合わせることで形状を制御することができ る.パラメータの値をランダムに変更する方法と比較し で最終形状に連結性を保持したい、等の細かな形状制御 をする必要がある場合に,特に有効である.さらに適用 する変換の選択される確率を設定することにより,より 細かな制御を行なうことも可能である.

・データサイズの圧縮

多数のフラクタル画像をデータ化する際に,反復関数 集合の要素を複数の形状間で共用することによりデータ サイズを少なく抑えることが可能である.反復関数集合 の要素数*m*を,反復回数*n*をとすると,色などの付加デ ータを除く形状のみのデータは変換の適用順序だけで済 むため,データサイズの理論値は1つの形状につき*n*× log,*m*ビットとなる.

6.今後の展開

今後の展開として3Dモデリングへの応用を進めてい く予定である.本文中で述べたフラクタルモデリングに 加えて景観シミュレーションやテクスチャ画像生成など への応用,また植物形状を表現するために広く用いられ ているL-systemにおける反復段階でのパラメータ変更 方法の検討も行なっていく.

参考文献

- 1) Mandelbrot,B.B.: *Fractal Geometry of Nature*, W.H.Freeman and Co., New York, (1982)
- Mandelbrot,B.B. and Ness, J.W.van: Fractional Brownian Motion, fractional noises and applications, SIAM Review 10,4 (1968) p.422-437
- M.Barnsley and S. Demko: Iterated Function Systems and the Global Construction of Fractals, Proceedings of the Royal Society of London, A399 (1985) p243-275
- Day, N. and Murayama, N.: Fractal Image Generation, IP-94-33, IEEJ Chaos Workshop, (1994)
- Przemyslaw Prusinkiewicz: Graphical Applications of Lsystem, Graphics Interface, (1986) p247-253
- 6) Hata, M.: On the structure of self-similar sets, Japan Journal of Applied Mathematics 2,2 (1985) p.381-414
- 7) Hutchinson,J.: Fractals and self-similarity, Indiana University Journal of Mathematics 30 (1981) p.713-747
- M.Barnsley: Fractals Everywhere, Academic Press, Inc. (1988) p96-97

APPENDIX

A. Parameters of generating fractals

A-1 Fig.2

Table 2. Mappings

		a	b	с	d	e	f
b. <i>W</i> ₁	ω	1/2	1/2	1/2	- 1/2	0	0
	ω_2	1/2	-1/2	- I/2	- 1/2	1/2	1/2
c. W3	ω,	1/2	0	1/2	1/2	0	0
	ω_2	1/2	0	- 1/2	1/2	1/2	1/2
d. W ₄	ω	1/2	-1/2	1/2	1/2	0	0
	ω2	1/2	-1/2	- I/2	- 1/2	1/2	1/2
e. <i>W</i> ,	ω,	1/2	-1/2	1/2	1/2	0	0
	ω_2	1/2	1/2	- 1/2	1/2	1/2	1/2
f. W _e	ω	1/2	0	0	- 1/2	0	0
	ω,	1/2	0	0	- 1/2	1/2	0.

A-2 Fig.4

Table 3a. Mappings

			1		100		112
		a	b	C	d	e	f
W_1	ω	.461	.461	.461	461	.000	.000
	ω_2	.622	.196	196	.622	.378	.196
W_z	ω	.511	.375	.431	375	.000	.000
	ω_2	. 622	.196	196	.622	.378	.196
w,	ω_{i}	.511	.375	.431	375	.000	.000
	ω_2	.622	.196	196	500	.378	.196
W_4	ω_{i}	.511	.375	.431	375	.000	.000
	ω_2	. 622	.196	250	.500	.378	.196
W_5	ω	.500	.250	.450	500	.000	.000
	ω_2	. 625	.375	250	500	.378	.196
W_{6}	ω	.500	.289	.289	500	.000	.000
	ω_2	. 625	.125	250	.625	.375	.125

Table 3b. Orders

a. (original)	$W_1^{ m ob}(K_0)$
b.	$W_2 \circ W_4 \circ W_5 \circ W_2 \circ W_4 \circ W_5 \circ W_2 \circ W_4 \circ W_5(K_0)$
с.	$W_2 \circ W_6 \circ W_5 \circ W_5 \circ W_3 \circ W_4 \circ W_2 \circ W_1 \circ W_3(K_0)$
d.	$W_6 \circ W_6 \circ W_4 \circ W_2 \circ W_6 \circ W_6 \circ W_1 \circ W_1 \circ W_3(K_0)$
e.	$W_5 \circ W_6 \circ W_5 \circ W_6 \circ W_2 \circ W_6 \circ W_5 \circ W_6 \circ W_5 (K_0)$

A-3 Fig.5

Table 4a. 3D Levy

W ₁	ω_{i}	<i>a</i> ₁₁	a12	a ₁₅	b_{11}
3D Levy		.500	500	.000	.000
		<i>a</i> ₂₁	<i>a</i> ₂₂	a23	<i>b</i> ₂₁
		.500	.500	.000	.000
		<i>a</i> 31	a ₃₂	a33	b_{31}
		.000	.000	.707	.000
	ω,	<i>a</i> ₁₁	a ₁₂	<i>a</i> ₁₃	b_1
		500	.500	.000	1.00
		a23	a22	a23	<i>b</i> ₂
		.500	.500	.000	.000
		<i>a</i> 31	a32	a33	b_{i}
		.000	.000	.707	.000
	ω,	<i>a</i> ₁₁	a ₁₂	a ₁₃	<i>b</i> ₁₃
		.000	.000	707	.500
		a21	a22	a29	b_2
		.500	.500	.000	.000
		<i>a</i> 31	a32	<i>a</i> ₃₃	b_{j}
		.500	500	.000	500
	ω,	a_{ii}	a ₁₂	a ₁₃	<i>b</i> ₁₁
		.000	.000	707	.500
		a21	a22	a23	<i>b</i> ₂₁
		500	.500	.000	.500
		<i>a</i> 33	a32	<i>a</i> ₃₃	b_{jj}
		.500	.500	.000	.000

Table 4b. 3D Sierpinski gasket

b. Order

A-4 Fig.7 See the Table 1 and Table 2 for the mapping data

Table 5. Orders

a.	$W_2 \circ W_5 \circ W_5 \circ W_5 \circ W_2 \circ W_5 \circ W_5 \circ W_5 \circ W_2(K_0)$
b.	$W_2 \circ W_3 \circ W_2 \circ W_2 \circ W_3 \circ W_2 \circ W_2 \circ W_3 \circ W_2 \circ W_2 (K_0)$
c.	$W_2 \circ W_5 \circ W_4 \circ W_2 \circ W_5 \circ W_4 \circ W_2 \circ W_6 \circ W_4 (K_0)$
d.	$W_2 \circ W_1 \circ W_2 \circ W_1 \circ W_2 \circ W_1 \circ W_2 \circ W_1(K_0)$
e.	$W_5 \circ W_5 \circ W_1 \circ W_5 \circ W_5 \circ W_1 \circ W_5 \circ W_5 \circ W_1(K_0)$
f.	$W_5 \circ W_2 \circ W_1 \circ W_5 \circ W_4 \circ W_5 \circ W_2 \circ W_1(K_0)$