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Plenopticカメラにおけるエンド・トゥ・エンド システムモデル 
End-to-end System Model for Plenoptic Cameras 
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要  旨 _________________________________________________  

Plenopticカメラのデザインスペースのためのシステムモデルを提案する．本モデルには，

先端的な画像再構成手法と応用に応じた性能メトリクスに加え，光学および検出器サブシス

テムに関する詳細情報が含まれている．このモデルにより，物体から発せられた光からカメ

ラセンサへの線形のマッピングを表現する，システム伝達マトリクスが求まる．画像形成に

関するこの線形モデルに基づき，線形逆問題を解く理論の概念を活用することで，空間情報

および分光情報の再構成法を提案する．さらに，異なるデータ再構成法の評価のための本シ

ステムモデルの利用法を示す． 

 

ABSTRACT _________________________________________________  

We introduce a system model for the design space of a plenoptic camera, including detailed 

information about the optical and detector subsystems, as well as advanced image reconstruction 

techniques and application-specific performance metrics. A system transfer matrix is derived that 

describes a linear mapping of light originating from an object onto the camera sensor. Based on that 

linear model for the forward image formation, reconstruction method for spatial and spectral 

information are proposed utilizing concepts from the theory of solving linear inverse problems. The 

use of the system model for evaluation of different data reconstruction methods is demonstrated. 

 

 

                                                  
* リコー イノベーションズ コーポレーション 

Ricoh Innovations Corporation 



Ricoh Technical Report No.39 22 JANUARY, 2014 

1. Introduction 

A recently developed computational imaging system is 

a plenoptic camera, which provides additional 

functionalities compared to a standard camera, such as 

instantaneous multi-spectral imaging, refocusing, and 3D 

imaging1-3). Those functionalities are achieved via 

insertion of a microlens array close to the detector, an 

optional spectral filter array inserted in the main lens, 

and use of advanced image processing algorithms (Fig.1). 

Plenoptic sensor data contain light field information of a 

scene, multiplexed by the optical system and the detector. 

The trade-offs between spatial, depth, and spectral 

resolution are determined by the characteristics of the 

optical system and the detector, as well as the imaging 

application at hand. In the literature, those trade-offs 

have been studied using first-order geometric models for 

the optical system, mostly concentrating on either the 

optical1-3) or the signal processing system components4,5). 

When facing the problem of designing a plenoptic 

camera system, performance needs to be predicted in 

order to make appropriate design choices. In our 

experience, performance, however, is difficult to predict 

since the dimensionality of the design space is large, and 

related design trade-offs not very clearly analyzed by the 

published models. In order to characterize the design 

space of a plenoptic camera system, we built an end-to-

end system model and implemented it in a simulation 

environment. In that environment, the design space and 

its tradeoffs can be explored and characterized using 

application-specific system metrics. In the following we 

will describe the system model as well as details 

regarding the adaptation of processing components to 

specific system metrics. 

 
Fig.1 Overview of plenoptic camera with spectral 

filters inserted into main lens. 

2. Understanding capture of spectral 

and spatial scene information by a 

plenoptic camera sensor. 

2-1 Overview of plenoptic system model 

During a camera design phase, the question arises of 

how accurate the measurements of the light modalities 

obtained with a plenoptic camera will be, what effect 

certain system parameters have on the overall system 

performance, and what algorithms to apply to sensor data. 

To answer these questions, we built an end-to-end 

system model including models for source, optics, 

detector, digital processing and application-specific 

performance metrics (Fig.2). The optics model includes a 

lens model for the main lens as well as for the microlens 

array, which consists of many small lenslets with 

diameters typically smaller than 250 microns. Using our 

system model, we are able to evaluate the spectral and 

spatial performance of a plenoptic camera through 

simulation of sensor data and design of system-specific 

reconstruction algorithms. Spatial performance evaluates 

resolution of small details in the image, whereas spectral 

performance evaluates accuracy of wavelength-specific 

information in the scene. 

For a multispectral plenoptic camera, wavelength-

dependent effects such as chromatic aberration can be 

analyzed. Chromatic aberration introduced by the main 

optics and the lenslets can lead to spectral multiplexing 

of wavelength information at the detector. 
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We also model the multiplexing of spatial information 

on the sensor in a small area under a single lenslet using 

wave propagation techniques. The simulated sensor data 

allow for development of reconstruction algorithms to 

recover the initial spectral and spatial scene information. 

 

 

Fig.2 Overview of camera system model. 

2-2 Spectral information model 

Chromatic aberration in the optical system and 

pixelation at the sensor causes spectral multiplexing in 

the captured sensor data. This spectral multiplexing can 

be described by a linear model including a transfer 

matrix that contains detailed information of the 

multiplexing of spectral components when passing 

through the optical system. This transfer matrix depends 

on the optical characteristics of the main lens, the 

microlens characteristics, and sensor parameters6). With 

knowledge of the transfer matrix, we can define the 

requirements for signal processing technologies in the 

model to be able to solve a linear inverse problem. In 6), 

we demonstrated that using the pseudo inverse of the 

transfer matrix we could improve the spectral 

reconstruction compared to simple remapping algorithms. 

In the source model the radiance reflected from the 

object is calculated based on irradiance of light and 

reflectance of object. Mean and covariance of the 

radiance are evaluated and propagated to a camera model. 

A camera model is derived based on optical response 

of the system and a detector model. A geometric 

approximation of the optical response is obtained via ray 

tracing. The radiance originating from an object point 

passed through optics is converted to digital output 

measurements for all the sensor pixels in a super-pixel 

behind a lenslet 

 

where x is a vector containing sensor data in each 

super-pixel, F is a system response matrix, b is a vector 

containing the spectral intensity values, Nphoton is the 

signal-dependent shot noise, and Nsystem is the signal 

independent noise, such as read noise and quantization 

noise. Embedding of statistical system properties and 

detailed optical characteristic into the plenoptic camera 

model is a major improvement over the simplistic 

models introduced in  3) and 7). 

Based on our spectral multiplexing model, we can 

design algorithms to reconstruct the original spectral 

information of an object location. A spectral feature 

vector b* is reconstructed from the plenoptic sensor data 

vector x via linear transformation 

, 

where Ψ is a spectral reconstruction matrix. In 6) we 

proposed a system-dependent spectral demultiplexing 

algorithm. The output signal is demultiplexed based on a 

estimated system response matrix . This matrix is 

determined from calibration experiments, where narrow-

band light is passed through the camera and its sensor 

response captured8). The spectral features are 

reconstructed by taking a pseudoinverse of , i.e., 

. 

The performance can be evaluated in terms of spectral 

reconstruction error, signal-to-noise ratio, or by 

classification accuracy metric. 

 

2-3 Spatial information model 

2-3-1 Image formation 

Object and sensor space in a plenoptic system are 

related by the system point response function called the 

pupil image function (PIF)9), which is analogous to the 

point spread function (PSF) in conventional cameras. 
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This PIF, which includes optical properties of the main 

lens and the microlenses, is a highly spatially varying 

function with significant variations in a superpixel area, 

compared to a conventional PSF with slow variation 

across the entire field of view. Given an optical system 

and an object plane position, its PIF can be obtained 

using the principles of Fourier optics9). The collection of 

all the PIF responses for different points in the object 

space comprises the system matrix A. Fig.3 shows 

example of simulated PIF responses on the sensor for 

object points close to the optical axis. The images are 

obtained by propagating light originating from an object 

point through the main and the on-axis lenslet onto the 

sensor. The left image shows the PIF response for an on-

axis object point, the middle and right image show PIF 

responses for points located a small distance away from 

the optical axis, demonstrating the highly spatially 

varying characteristics of the PIF response under a single 

lenset. This characteristic cannot be explored with the 

geometric optics models from  1),  2) and  5). 

 

 
Fig.3 Examples of optical responses captured at the 

sensor for object points imaged through the on-
axis lenslet. 

If we denote the image at the sensor as y (in a 

vectorized form) and the object points as x, we can 

formulate the image acquisition process of our linear 

plenoptic system as: 

, 

where η represents system noise9). The reconstruction 

problem is thus to find x, given y and A. The PIF matrix, 

however, can be rank deficient and recovering a high 

resolution object data represents a difficult inverse 

problem. This is particularly the case when the object is 

in focus at the lenslet array, as in this case there is no 

parallax between light rays and superresolution methods 

such as 5) are not applicable. The focused case is of 

particular interest for multi-spectral imaging systems. 

2-3-2 Image reconstruction 

To solve an under-determined linear system we can 

use least-squares-based solutions or more advanced 

optimization techniques. The least-squares-solutions 

provide good reconstruction in the absence of noise, but 

degrade when sensor noise is present9). One way to 

enhance the robustness to noise is to incorporate some 

prior information about the signal or image, such as 

sparsity, i.e. the embedding of low-dimensional structure 

in high-dimensional signals. The recent developments of 

theory and algorithms for processing of sparse signals 

has lead to the discovery of computational tools to 

recover low-dimensional structures in high-dimensional 

data. The tools often use complex optimization methods 

to solve ill-conditioned linear inverse problems given 

certain priors on data sparsity10). Such prior assumes that 

signal is sparse in a certain dictionary , i.e., that in the 

signal model , the vector of coefficients c has a 

small number of non-zero entries. Compressive Sensing 

(CS) theory addresses the problem of the reconstruction 

of sparse signals from linear measurements10). Following 

the introduced notation, the CS reconstruction problem is 

to find a sparse estimate for c from measurements y such 

that . 

When certain conditions on A and  are met, it has 

been shown that sparse c can be reconstructed by solving 

the following convex optimization problem: 

, 

where λ is a trade-off parameter between the level of 

sparsity and the fidelity of signal reconstruction10). This 

optimization problem can be solved efficiently using 

interior point or gradient methods. However, CS theory 

requires that the coherence between A and  is small. 
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The mutual coherence between A and  is defined as 

the following equation11): 

 
where ai is the i-th row of A , φj is the j-th column of . 

If the signals are not directly observed, but are 

measured through a measurement matrix A, estimation 

of c requires that matrices A and  have small mutual 

coherence. This condition influences the dictionary 

learning process because we need to find a dictionary 

that not only well describes the data, but is also 

incoherent with the system measurement matrix A. 

In 12), we propose a new algorithm that achieves such 

learning. It is a two-step algorithm, which alternates 

between estimating sparse coefficient vectors and 

optimizing the dictionary. The algorithm is summarized 

in Fig.4. The sparse coefficient vector c for each column 

of the training data matrix X is stored as a column in the 

dictionary coefficient matrix C. Gradient methods are 

used to solve the two optimization problems for C and Φ. 

 

 

Fig.4 Dictionary learning algorithm for plenoptic data 
representation and reconstruction from 13). 

3. Reconstruction results using the 

system model 

3-1 Spectral information extraction 

The derived model, including spectral demultiplexing, 

is used to evaluate the system performance for a 

prototype consisting of a commercially available DSLR 

camera and a filter array with four narrow-band spectral 

filters with center wavelengths 450, 540, 570, and 

650nm (Fig.5). Spectral calibration is then performed to 

construct the system response matrix. To calibrate the 

system response, monochrome light corresponding to the 

wavelength of each spectral filter is sent through the 

main lens. The response of each filter can then be 

captured and used to form the system response matrix14). 

Examples of the response captured by sending 

monochrome light with central wavelength of 540 nm 

and 650 nm are shown in Fig.6. 

Our spectral demultiplexing method is compared with 

the single pixel extraction method7), in which a single 

pixel in the image of each filter cell on the sensor with 

maximum intensity is selected. Reflectance values 

measured from different patches in a color checker are 

used as ground truth data. The reconstructed spectral 

intensity values are normalized to reflectance based on a 

reference image captured on a Labsphere reflectance 

target. The spectral reconstruction error is computed at 

four different wavelengths, and by averaging the values 

calculated based on the white, black, red, orange, green, 

and blue patches. In this evaluation the reflectance is 

reconstructed from only one lenslet. The results based on 

single pixel approach and demultiplexing are compared 

in Figs.7 and 8. It is seen that our demultiplexing 

approach is comparable to the single pixel extraction 

approach, showing, that we can compensate for the 

chromatic system distortions by demultiplexing the 

sensor data according to the lens characteristics. The 
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system performance is further evaluated based on the 

SNR. The SNR is computed based on the image of a 

white object captured with two different exposure 

settings. The results are shown in Fig.7. It is shown that 

the spectral demultiplexing method reconstruct the 

spectral information with much higher SNR. 

 

 

Fig.5 Prototype filter array in main lens with the 
corresponding spectral filter responses (top), 
color checker target and sensor data captured 
spectrally coded plenoptic camera (bottom). 

 

Fig.6 Plenoptic calibration data for two different 
wavelengths: a) 540nm, b) 650nm. 

 

 

Fig.7 Performance evaluation of spectral plenoptic 
camera, measuring spectral reconstruction error 
(top), and SNR (bottom). 

 

Fig.8 Spectral reconstruction of an image of a hand 
capture at 650nm: single pixel method (left), 
proposed demultiplexing method (right). 

3-2 Spatial information extraction 

The use of the system for the recovery of spatial 

information from plenoptic sensor data is demonstrated 

using software simulation. We have first simulated the 

PIF matrix for one on-axis lenslet using the wave-

propagation analysis of the non-aberrated plenoptic 

system9). The resulting linear system simulates image 

formation for the case of a planar object that is in focus 

at the microlens array plane. For dictionary learning we 

use a training set X of video frames from a natural movie 

database (as used previously in 11)). We have learned a 
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dictionary of atoms of size 40x40 with L = 1600 atoms. 

This block size is chosen such that a block is imaged by 

the main lens on exactly one lenslet covering 52x52 

sensor pixels. In each iteration we have selected a batch 

of 6400 blocks of size 40x40. Each block has been 

reshaped into a vector and placed into a column of X. We 

have then simulated the plenoptic imaging process as 

, where A is the PIF matrix and η is white 

Gaussian noise of SNR= 60dB. An example PIF matrix 

is shown in the top left of Fig.9. Two example images 

contained in the training set are shown in the top right of 

Fig.9. The vectorized form of those intensity data form 

the columns of the matrix X. The bottom pictures in 

Fig.9 show the result of the learning algorithm, based on 

the optimized coefficient dictionary Φ: three sensor 

space elements, i.e. three column data of AΦ (left), three 

object elements, i.e. three column data of Φ (right). 

 

 
Fig.9 Results from training the dictionary for a 

plenoptic camera system. 

In Fig.10 we show the reconstruction for the planar 

Doll object using the proposed dictionary learning 

algorithm, when placed in front of the plenoptic system. 

We have divided the original object into blocks, 

according to the field of view of each lenslet in an 11x11 

array, and simulated the superpixel at the sensor behind 

each lenslet. White Gaussian noise of SNR = 60dB has 

been added to the sensor data. Object reconstructed using 

non-linear least square fitting, as proposed in 9). Using 

our proposed algorithm (Fig.4), we have estimated the 

sparse coefficient vectors C and the reconstructed blocks 

as X = ΦC shown in Fig.10. Peak Signal to Noise Ratio 

(PSNR) for the reconstructions using non-linear least 

square fitting is 22.5dB, while for the reconstruction 

using the dictionary learning method is 26.1dB. The 

visual quality is also better as shown in close-up images 

in Fig.10. One can notice some blocking artifacts due to 

per-lenslet processing of the sensor data. These can be 

removed by performing object reconstruction from 3x3 

lenslet areas and then averaging. More details on 

reconstruction performance are discussed in 12). 

 

 

Fig.10 Spatial image reconstruction results using trained 
dictionary from simulated sensor data. 
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4. Conclusions 

We developed an end-to-end system model for a 

plenoptic camera that enables evaluation of different 

imaging modalities, such as spectral and spatial scene 

information, allowing use of detailed optics and sensor 

models, and image processing algorithms. The model is 

used to design novel reconstruction methods for spectral 

and spatial information recovery. Experimental results 

for information recovery using software simulation and 

prototype data are presented. 
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